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Motivation (1/3)

Mohamed Atta

Marwan al-Shehhi
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Motivation (2/3)

� Assist occupant with 
dementia or Alzheimer's 
disease carry out his/her 
daily routine.

� Strategy games, Intrusion 
Detection Systems, Elder 
care etc.
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Motivation (3/3)

� The system can recognise
the intention of feeding
the baby.
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Summary & Challenges
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Summary of our Work

� Model  intention recognition in a binary form.
� Find suitable combination of unsupervised learning 

techniques, through experimentation.
� Develop an incremental intention recognition (IIR) 

system.
� Test IIR system on real datasets.
� Extend IIR system with temporal constrains and 

sensor reliability.  
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Challenges

� Understanding of background on Intention 
Recognition and Unsupervised learning.

� Finding a suitable model for the system.

� Convert real data to binary form that is compatible 
with our model.
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Background
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Intention Recognition (1/2)

� What is Intention Recognition (IR)?
÷ It is the task of recognising the intentions of an agent (human or 

otherwise) by analysing his observed actions, the changes in the 
state (environment) resulting from his actions, the context and any 
information about (possibly learned) expected behaviour of the 
observed agent

÷ IR can be classified as:
¢ Intended:  The agent wants his intentions to be identified and 

intentionally gives signals to be sensed by other (observing) 
agents. e. g. language understanding where the speaker wants to 
convey his intentions
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Intention Recognition (2/2)

¢ Keyhole:  The agent does not care whether or not his intentions 
are identified; he is focused on his own activities, which may 
provide only partial observability to other agents. e.g. 
dementia/Alzheimer patient

¢ Adversarial: The agent is hostile to his actions being observed. 
e.g real strategy game player (Warcraft)

¢ Diversionary: The agent attempts to conceal his intentions by 
performing misleading actions. e.g intrusion in a network 
system. 
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Current Approaches (1/5)

Hidden Markov Model

Based on the objects used (spoon, knife, 
fork, or cup, which are the observable 
variables), we can infer the HMM states 
and their transitions.

Conditional Random Fields 

Observations aren’t randomly 
generated, and hidden states depend 
on global observations.
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Current Approaches (2/5)

Bayesian Network

Constructing a three-layer Bayesian Network, 
upon which intention recognition is performed. 
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Current Approaches (3/5)

Decision Tree Artificial Neural Network

e.g If footsteps are detected, but not the 
characteristics of running or Nordic 
walking, the activity falls through the tree 
to a class “walk”.

Use of resilient back propagation as the 
training algorithm was used as the ANN 
classifier.
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Current Approaches (4/5)

Case Base Reasoning

Rather than solve every problem from 
scratch, case-based reasoning uses past 
experience in the form of previously solved 
problems to solve new problems that share 
similar situations.
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Current Approaches (5/5)

� Abduction
÷ room-is-hot ß heating-is-on

� Weighted Abduction
÷ building(X, public) ̂  door-open(X)0.1 à may-enter(X) 
÷ building(X, private) ̂  door-open(X)0.9 à may-enter(X) 
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Unsupervised Learning Approaches (1/2)

� What is Unsupervised Learning?
÷ Find hidden structures or patterns in data 
÷ The data have no target attribute

� Steps in Unsupervised Learning
÷ Dimensionality reduction (feature extraction/feature selection)
÷ Clustering
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Unsupervised Learning Approaches (2/2)

� Work of Afroditi Xafi
÷ Find similarities between pair of actions  (Similarity Matrix)
÷ Transform matrix into Euclidean plane (Laplacian Eigenmap)
÷ Fuzzy C-Means Algorithm (Membership Matrix)
÷ Incremental Intention Recognition

� Work of Wang
÷ Create similarity matrix and transform it into Euclidean plane as 

Xafi.
÷ Compare Fuzzy C-Means, Possibilistic C-Means, Improved-

Possibilistic C-Means
÷ Incremental Intention Recogntion using I-PCM
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Unsupervised Learning
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Dimensionality Reduction

� What is dimensionality reduction?
÷ A procedure applied to a dataset in order to obtain a reduced 

representation of the original data.

� Why we want to do this?
÷ Clustering techniques work more efficiently when dealing with 

low-dimensional data.
÷ Possibility of visualizing the data .

� Famous techniques: PCA, Laplacian Eigenmaps, 
Diffusion Maps, t-SNE, Isomap, LLE, MDS
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Clustering (1/2)

� What is clustering?
÷ A way to partition a dataset in a set of meaningful sub-classes or 

clusters.
÷ Assuming that the data were generated from a number of different 

classes, clustering aims to group data belonging in the same class 
together.

÷ Datapoints in a dataset are said to be close to each other based on 
some notion of similarity (similarity metric).

÷ Most important categories of clustering algorithms:
¢ Hierarchical VS Partitional
¢ Hard VS Fuzzy
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Clustering (2/2)

� Clustering Techniques:

÷ Agglomerative Hierarchical 

÷ K-means

÷ Mixture of Gaussians

÷ DBSCAN
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Similarity Measures (1/6)

� What similarity metric?
÷ Euclidean distance

¢ Pythagorean metric
¢ It is the "ordinary" distance between two points that one would 

measure with a ruler .
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Similarity Measures (2/6)

÷ Mahalanobis distance
¢ Provides a relative measure of a data point's distance (residual) 

from a common point.

÷ Cosine distance
¢ Angle (Θ) between two vectors
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Similarity Measures (3/6)

÷ Jaccard distance
¢ The intersection divided by the size of the union of the sample 

sets (categorical data)

¢ 𝐽 = 1 − |&∩(|
|&∪(|

÷ Tanimoto distance
¢ Extension of Jaccard distance

¢ 𝑇 = &+( 
|&|,-|(|,.&+(
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Similarity Measures (4/6)

÷ Hamming distance
¢ The number of positions at which the corresponding symbols 

are different.

"toned" and "roses" is 3.

÷ Spearman distance
¢ Measures the correlation between two sequences of values
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Similarity Measures (5/6)

÷ Cityblock/Manhattan distance
¢ This is simply the number of edges between points that must be 

traversed to get from “a” to “b” within the grid.

÷ Minkowski distance
¢ Generalization of both the Euclidean distance and the 

Manhattan distance
¢ P=1 then Manhattan distance, P=2 then Euclidean distance
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Similarity Measures (6/6)

÷ Chebychev distance
¢ The distance between two vectors is the greatest of their 

differences along any coordinate dimension
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Modelling
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Basic Terms

� Terminology used in intention recognition
÷ Action: A basic operation an agent can do e.g open the fridge.

÷ Plan: A set of actions associated with an agent’s goal/intention.

÷ Intention: The goal of an agent which is associated with a number 
of different plans.

÷ Plan library: Contains a set of plans.

÷ Action stream: A set of actions that are observed of an agent 
attempting to achieve a goal/intention.
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Formulation of Plan Libraries

� How to model actions and plans?
÷ Abstract action representation:

¢ A1->Open the fridge
¢ A2->Pick up dirty clothes
¢ A3->Get milk
¢ A4->Open cupboard
¢ A5->Get glass 
¢ A6->Turn on TV
¢ A7->Heat milk
¢ A8->Pour milk to glass

÷ Binary representation of actions to achieve a goal (e.g have a warm 
cup of milk):
¢ 1 0 1 1 1 0 1 1
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Model Example

Binary 
representation of 
a plan library

Abstract 
representation of 
a plan library

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 I
P1 0 1 0 0 1 0 1 1 0 1 I1
P2 0 0 0 0 1 0 1 1 0 1 I1
P3 1 0 0 1 0 0 1 0 0 0 I2
P4 1 0 0 1 0 1 1 0 0 0 I2
P5 0 0 1 0 1 0 1 1 1 0 I3
P6 1 0 1 0 1 0 1 1 1 0 I3

I1 I2 I3
P1 P2 P3 P4 P5 P6
2 5 1 1 3 1
5 7 4 4 5 3
7 8 7 6 7 5
8 10 7 8 7

10 9 8
9
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Experiments
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Experiments Setup

� 9 synthetic datasets with different properties
÷ Number of intentions

÷ Number of plans per intention

÷ Total number of actions

÷ Plan mutation percentage

÷ Noise percentage
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Experiment datasets

Properties of datasets used

Dataset 
1

Dataset
2

Dataset 
3

Dataset 
4

Dataset 
5

Dataset 
6

Dataset 
7

Dataset 
8

Dataset 
9

Intentions 3 3 3 3 3 3 3 3 3

Plans per 
Intention

300 300 200 200 300 300 300 300 300

Maximum 
number of 

actions

800 800 300 800 800 800 800 800 800

Plan mutation 
percentage

10% 30% 30% 30% 30% 30% 30% 30% 30%

Noise 
percentage

0% 0% 0% 10% 5% 10% 15% 20% 40%
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Dimensionality Reduction Technique

� Which dimensionality reduction technique is 
suitable for IR?

÷ No straightforward  way to measure the suitability of a 
dimensionality reduction technique.

÷ Use of nearest neighbour preservation ratio. I.e focus on local 
structure of points.

÷ Techniques to compare: PCA, t-SNE, Laplacian Eigenmap,
Diffusion Maps
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PCA (1/2)

� Enables plans with similar actions to be close to each 
other in the Euclidean space while dissimilar plans 
are kept far apart.

� Any plan has some actions that are more important 
than others, in the sense that we could characterize 
the plan by them.

� Assumes linear relationship between variables
� Steps:

÷ Construct covariance matrix Σ = 010
2.3, where U is the mean centred

matrix and N the total number of plans
÷ Find m largest eigenvalues/eigenvectors. 
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PCA (2/2)

Put the axes to the direction of the greatest 
variability. (eigenvector that corresponds 
to the largest eigenvalue)
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t-SNE (1/4)

� Visualizes high-dimensionality data through 
dimensionality reduction

� Calculating the pairwise similarities between plans.

� Two plans are similar if the same actions co-occur to 
both of them and at the same time actions that are 
present in other plans are not present in them. 
(Hamming distance)
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t-SNE (2/4)

� Construct a conditional probability matrix (p) based 
on Hamming distances and Gaussian kernel. 

𝑃𝑝6𝑝7 =
𝑒.

9:;:<
=>,

∑ 𝑒.
9:;:<
=>,@AB 	

� Initialize a distance matrix at random (|P|x|P|).
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t-SNE (3/4)

� Construct conditional probability matrix “q” for lower 
dimension using student t-test kernel. 

𝑞E;E< =
(3-9:;:<)

HI

∑ (3-9:;:<)
HI

;JK

� Use of mutual entropy as an objective function. Use of 
gradient descent algorithm to minimize that function.

� The key idea is that if “p” is the same as “q”, then lower 
dimension counterparts can model the problem.
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t-SNE (4/4)
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Laplacian Eigenmaps (1/2)

� Find non-linear relationships in data.
� Retain the local structure of the datapoints after 

reducing the dimensions.
� Algorithm:

1. Use Hamming distance to construct a nearest neighbours
matrix.

2. Build a matrix, W, representing the connections in the graph.
3. Build diagonal matrix D (degree matrix), with each entry 

being the sum of each row of matrix W.
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Laplacian Eigenmaps (2/2)

4. Create Laplacian matrix L = D –W.
5. Solve equation L f = λ D f, to get eigenvalues/ eigenvectors.

� Take the smallest eigenvalues and corresponding 
eigenvectors .
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Diffusion Maps (1/2)

� Discover non-linear relationships in data

� Focus on retaining the  global structure of datapoints
i.e not only nearest neighbours should be near in 
lower dimension but also far away points in high 
dimension should be far away in low dimension.

� Datapoints are nodes in a graph. Their connection 
strength is calculated by using their hamming 
distance.
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Diffusion Maps (2/2)

𝑤E;E< = 𝑒
.9:;:<
=>,

� Normalize over the sum of weights to get the Markov 
matrix, M.

� Solve eigenproblem Mv=λv 
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Results

PCA t-SNE Diffusion 
Maps

Laplacian
Eigenmaps

Dataset 1 68.21% 67.84% 24.10% 66.56%
Dataset 2 68.31% 68.16% 38.89% 66.61%
Dataset 3 90.80% 90.80% 34.37% 90.80%
Dataset 4 85.48% 84.01% 35.28% 84.41%
Dataset 5 66.24% 65.91% 37.36% 64.96%
Dataset 6 63.71% 63.48% 29.28% 62.71%
Dataset 7 61.65% 61.30% 35.38% 60.97%
Dataset 8 59.51% 59.48% 25.77% 58.63%
Dataset 9 52.99% 53.36% 28.37% 52.10%
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Cluster Analysis 
Part
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Clustering

� Again, no straightforward way to measure suitability 
of a technique. 

� We use a statistical measure, called Silhouette value 
to get an idea of suitability.

� Silhouette value for each datapoint (plan) is a 
measure of how similar that point is to points in its 
own cluster, compared to points in other clusters. 
(from -1 to +1 or -100% to +100%)
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Agglomerative Hierarchical Clustering (1/3)

� Begin with as many clusters as objects. Clusters are 
successively merged until only one cluster remains.

� Different algorithms to find distance between two 
clusters:

÷ Single Link
¢ The distance between two clusters is based on the points in 

each cluster that are nearest together
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Agglomerative Hierarchical Clustering (2/3)

÷ Complete Link
¢ The distance between two clusters is based on the points in 

each cluster that are furthest apart
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Agglomerative Hierarchical Clustering (2/3)

÷ Average-Link
¢ The distance between clusters is the average distance between pairs of 

observations

÷ Ward’s method
¢ Combine the 2 clusters whose combination results in the smallest 

increase in ESS (sum of squared deviations from the cluster centroid)
¢ Ward's method joins clusters to maximize the likelihood at each level of the 

hierarchy (minimizes the total within-cluster variance).
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Results

� Ward’s method and Average-link with Euclidean 
distance shown to be the best from agglomerative
hierarchical clustering but

÷ Average linkage tends to join clusters with small variances.

÷ Ward's method is sensitive to outliers. 

54/86



K-means (1/2)

� Partitional algorithm that aims to group data into 
predefined “k” number of clusters.

� Algorithm:
1. Initialize centroids in Euclidean space at random
2. Assign points to their nearest centroid
3. Refit centroid to the gravity of the points assigned to it
4. Iterate (go to step 2) until convergence 

� Euclidean distance shown to give the best results.
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K-means (2/2)

Local Minima when k=3
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Mixture of Gaussians

� Similar to K-means but it is fuzzy instead of hard.
� Assumes data were generated from a normal 

distribution.
� Tries to fit Gaussian distributions to data using EM 

algorithm.
� Created a membership matrix but plans achieve only 

one intention (take the most possible one)
� Bad results obtained.
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DBSCAN

� Density-Based Spatial Clustering of Applications 
with Noise

� Works better in large datasets.
� Finds the number of clusters.
� Performs well on synthetic datasets.

58/86



Results

� Agglomerative Hierarchical Clustering shown to 
perform best overall when tested on both Xafi’s
example (page 23 of Xafi’s report) and on a made up 
domestic scenario. 

� DBSCAN fails because points are not dense enough. 
K-means falls into local minima (it is dependent in 
its initialization)

Xafi’s Example Domestic Example
Hierarchi

cal
K-means DBSCAN

Mean 
Silhouette 

Value

95.31% 95.31% 94.16%

Hierarchic
al

K-means

Mean 
Silhouette 

Value

100% 90.91%
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Visualization of Results
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Incremental Intention 
Recognition
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Incremental Intention Recognition

� Incremental intention recognition (IIR) is the 
problem of recognising the intentions of an agent by 
(incrementally) observing its actions.

� Make use of the unsupervised learning techniques. 

� Two methods were proposed (H1 & H2).
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IIR example (1/3)

� Recognise the intention
of an agent. 
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IIR example (2/3)

� Open fridge is 
observed.
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IIR example (3/3)

� Get milk is observed.
� Increase probability

for achieving the 
intention of feeding
the baby.
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Methods for IIR

Method 1 (H1)

I1 50%
I2 25%
I3 25%

Method 2 (H2)

I1 38.45%
I2 38.45%
I3 23.10%
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IIR Example (1/2)

Xafi’s Example

H1 H2

I1 I2 I3
P1 P2 P3 P4 P5 P6 P7 P8 P9
14 14 14 2 2 2 13 13 13
5 5 5 1 1 1 9 9 2

14 14 14 4 4 2 2 2 2
12 12 2 5 14 5 11 14 11
15 4 15 15 4 15 11 4 11
3 3 3 12 12 12 10 10 10
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IIR Example (2/2)

H1 H2
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Experiments with 
Real Datasets
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MIT Activity Dataset

� MIT Activity dataset
÷ Preparing lunch
÷ Toileting
÷ Preparing breakfast
÷ Bathing
÷ Dressing
÷ Grooming
÷ Preparing beverage
÷ Doing Laundry
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Finding the Number of Clusters

� How many clusters? 
÷ Naively say 8, but how do we differentiate Preparing lunch from 

preparing breakfast? (since we do not consider time)
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IIR on MIT Activity Dataset (1/4)

Actions from toileting and bathing used
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IIR on MIT Activity Dataset(2/4)

Actions from preparing breakfast and preparing beverage used
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IIR on MIT Activity Dataset (3/4)

Dressing Doing the laundry
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IIR on MIT Activity Dataset (4/4)

Preparing Breakfast Grooming
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Results for MIT Activity Dataset

� We are able to recognise broad categories of 
activities with over than 40% accuracy.

� Tapia et al. recognise activities from 25%-89%.
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CASAS dataset

Data contained a lot of noise. 
Sensor data do not always represent actions.
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Post-Processing
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Temporal Constrains and Sensor Accuracy

� Open fridge->
Get milk->
Heat milk->
Pour milk into bottle->
Feed the baby

� Reliability of 
observing
Open fridge
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Temporal Constrains

� Incorporate temporal constrains.
÷ For example, if an agent intends to have breakfast, in order to 

pour the milk in the glass, he has to open the fridge and then get 
the milk.

A1 A2 A3 A4 A5 A6 A7 I
P1 1 1 1 0 0 0 0 I1
P2 1 1 0 0 0 0 1 I2
P3 0 0 1 1 1 0 0 I3
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Model for Temporal Constrains

� A2 is most likely to precede A1, and A3 is most likely 
to precede A2. A1, A2 and A3 can be repeated in a 
plan as many times without any cost at all as the 
transition weight to themselves is one. We can 
represent the constraint as follows: A3 < A2 < A1.
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Temporal Constrains Results

P1:A3 < A2 < A1
P2:A1 < A2 < A7 or A1 < A7
P3: A3 < A4 < A5 or A3 < A5
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Sensor Reliability

� Add sensor reliability for recognising actions.
÷ Real life sensors might not be reliable and recognise actions that 

have not happen or vice versa.

A2 belongs in P1 and P2. A1 
might have happened before 
and thus, I2 is more likely to 
be the intended goal 
(temporal constrains are also 
applied). 

Action Accuracy
A1 0.1
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Conclusion
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Conclusions

� Unsupervised learning is helpful in IR

� No silver bullet exists (techniques are data dependent)

� Real datasets had low level data. The system was 
designed for more abstract data (actions not sensor 
firings).

� More work is needed in post-processing. 

� More real data should be tested. 

85/86



Q&A

Questions?
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